The smallest hard-to-color graph

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The smallest hard-to-color graph for the SL algorithm

For a given approximate vertex coloring algorithm a graph is said to be slightly hard-tocolor (SHC) if some implementation of the algorithm uses more colors than the minimum needed. Similarly, a graph is said to be hard-to-color (HC) if every implementation of the algorithm results in a nonoptimal coloring. We study smallest such graphs for the smallest-last (SL) coloring algorithm. Our main re...

متن کامل

The smallest hard-to-color graph for algorithm DSATUR

For a given approximate coloring algorithm a graph is said to be slightly hard-to-color (SHC) if some implementation of the algorithm uses more colors than the chromatic number. Similarly, a graph is said to be hard-to-color (HC) if every implementation of the algorithm results in a non-optimal coloring. In the paper, we study the smallest of such graphs for the DSATUR vertex coloring algorithm...

متن کامل

The smallest nonevasive graph property

A property of n-vertex graphs is called evasive if every algorithm testing this property by asking questions of the form “is there an edge between vertices u and v” requires, in the worst case, to ask about all pairs of vertices. Most “natural” graph properties are either evasive or conjectured to be such, and of the few examples of nontrivial nonevasive properties scattered in the literature t...

متن کامل

Smallest Color-Spanning Objects

Motivated by questions in location planning, we show for a set of colored point sites in the plane how to compute the smallest (by perimeter or area) axis-parallel rectangle, the narrowest strip, and other smallest objects enclosing at least one site of each color.

متن کامل

The Petersen graph is the smallest 3-cop-win graph

In the game of cops and robbers on a graph G = (V,E), k cops try to catch a robber. On the cop turn, each cop may move to a neighboring vertex or remain in place. On the robber’s turn, he moves similarly. The cops win if there is some time at which a cop is at the same vertex as the robber. Otherwise, the robber wins. The minimum number of cops required to catch the robber is called the cop num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1991

ISSN: 0012-365X

DOI: 10.1016/0012-365x(91)90313-q